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Abstract 

The conventional way to derive the equations of the Lorentz-transformation is done by linearly equa-

ting two mathematical expressions which are both equal to zero. If such a derivation could be valid, the 

Lorentz-transformation should not be a mathematically-isomorphic transformation which maps the 

coordinates of a single space-time coordinate-point into the coordinates of another unique space-time 

coordinate-point. Since it is known that the Lorentz-transformation actually does the latter, an 

alternative derivation for these equations is proposed: Although the Lorentz-equations, derived in the 

latter manner are mathematically isomorphic, as they must be, it is found that the untransformed space-

time coordinate-point and its transformed space-time coordinate-point are not coincident; and thus do 

not define an invariant space-time point within a four-dimensional space-time manifold. Furthermore, 

the physics involved restricts this isomorphism to be unidirectional: i.e. the Lorentz-transformation 

only applies when transforming the three-dimensional (3D) space-coordinates and the time of (what 

will be called) a primary-event, from within (what will be called) the primary-event’s proper inertial 

reference-frame (IRF), into the space-time coordinates of a concomitant non-primary event within 

another IRF, relative to which the proper IRF of the primary-event is moving. As required by Galileo’s 

concept of relativity, the the non-primary event is caused by the primary-event and therefore the coor-

dinates of the non-primary event cannot be transformed back into the coordinates of the primary-event 

which is causing the non-primary event. 

 

PACS numbers: 03.30.+p, 06.30.Ft 
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1. Introduction and background 

The equations, which are known as the Lorentz-transformation, had already been discovered before 

Einstein formulated his two postulates in 1905 which defined his Special Theory of Relativity [1]. 

Before then, the Lorentz-transformation had been justified by assuming that a rod contracts in length 

when moving through the ether; where the latter had been believed to be the stationary medium within 

which light-waves are formed and through which these waves are propagating. In order to formulate 

his two postulates, Einstein had to reject the existence of the ether. The latter postulates can be 

summarized as follows: 

(i) First postulate (principle of relativity): 

The laws of physics are the same in all inertial reference-frames. 

(ii) Second postulate (invariance of light speed c): 

The speed of light in free-space has the same value c in all inertial reference-frames. 

The first postulate justifies the validity of the second postulate; and the second postulate 

provides the fundamental reason why the equations of the Lorentz-transformation must be what they 

are. 

In conformation with Einstein’s derivation [1], textbooks assume that there are two three-

dimensional inertial reference-frames (IRF’s): An IRF=K (with Cartesian coordinates x, y, z) and an 

IRF=K’ (with Cartesian coordinates x’, y’, z’), which have parallel coordinate-axes and which are 

moving with a speed v along their coincident x- and x’-directions relative to one another. To obtain the 

Lorentz-equations, the origins 0 and 0’ of these coordinate-systems are chosen to coincide at the instant 

that a single spherical wavefront of light is emitted from this coincident point. At this same instant in 

time, a perfect clock at 0 within the IRF=K, and another perfect clock at 0’ within the IRF=K’ are 

synchronized to both read t=t’=0. Note that this motion is relative, so that either one of the IRF’s can 

be chosen to be the stationary IRF and thus the other IRF to be the moving IRF. 

Since, according to Einstein’s second postulate, the speed of light must be the same within 

both inertial reference-frames, the emitted spherical wavefront, from the coincident origins 0 and 0’ at 

the time t=t’=0, must move away from each origin 0 and 0’ with the same speed c. Einstein reasoned 

(and it is still reasoned at present in all text books) that the clocks within the IRF=K and the IRF=K’ 

must, after synchronization, respectively keep time at different rates. It should be noted that this is an a 

priori assumption which does not follow logically from Einstein’s two postulates: Even though 

Einstein subsequently derived a formula for such a time-rate difference from the Lorentz-equations 

(which he called “time-dilation”), it is circular reasoning to argue that since a time-rate difference can 

be justified in terms of the Lorentz-equations, this time-rate difference can, in turn, be used as a starting 

point to derive the Lorentz-equations. 

The Lorentz-equations should first have been derived without making this assumption, and 

only then it should have been proved that these equations demand a time-rate difference. Therefore, the 

assumption of different time-rates within IRF=K and IRF=K’, in order to derive the Lorentz transfor-

mation, should have been a third postulate by Einstein; and not a subsequent derived-result from these 

equations. Nonetheless, according to this unpostulated circular-assumption, it has been reasoned by 

Einstein (and since then by all mainstream physicists) that this spherical wavefront, which manifests 
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simultaneously around 0 and around 0’ respectively, must be given in terms of two different times, t 

and t’, within IRF=K and IRF=K’ respectively: So that one can write for each respective manifestation 

of this wavefront that: 

 

     2222 )ct(zyx =++     (1a) 

And 

            2222 )'ct()'z()'y()'x( =++     (1b) 

 

As can be found in textbooks (see for example [2,3]) it is then reasoned that these two expressions must 

be linearly proportional to one another; so that one can write that: 
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Eq. 2 has since 1905 been used as a template to derive (or should one rather use the word contrive?) the 

equations of the Lorentz-transformation. By using the imaginary number 1i −= , Eq. 2 can be written 

as: 

 

        22222222
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It is well-known that mathematically one can have a four-dimensional (4D) manifold within 

which a 4D vector s gives the position of a 4D single point relative to the 4D origin 0 of a reference-

frame for the manifold. This same four-dimensional point can be referenced by two sets of 4D Carte-

sian coordinate axes: One with an origin 0 and another with an origin 0’: The mathematical trans-

formation, from one coordinate-point (x’, y’, z’, u’) within a four-dimensional reference-frame 

(4DRF=K’) into its concomitant coordinate point (x, y, z, u) in the reference-frame 4DRF=K, is 

isomorphic since these points are uniquely related to one another through the transformation-equations. 

In the case of a 4D manifold this unique relationship is automatically ensured since the two coordinate-

points are those for the same 4D point within the 4D manifold: i.e. the two 4D coordinate-points 

coincide within the 4D manifold. 

When the two different reference-frames, each with Cartesian coordinate axes, are obtained by 

a rotation within four-dimensions around a coincident 4D origin 0=0’, one can write in terms of the 

magnitude s of the vector s of a point, that: 

 

         222222222 )'u()'z()'y()'x(uzyxs +++=+++=   (4) 

 

The vector s remains the same vector when the coordinates are transformed from one reference-frame 

into the other reference-frame, and it is thus invariant when the coordinates of a 4D point (x’, y’, z’, u’) 

within 4DRF=K’ are transformed into the coordinates (x, y, z, u) within 4DRF=K of the same point in 

the 4D manifold that is denoted by the invariant vector s. Obviously s and s
2
 also remain invariant. This 

invariance is mandatory for a transformation to be a rotational coordinate-transformation in four-
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dimensions. When the transformation is invariant within four-dimensions, the coordinate transforma-

tion-operator is a 4x4 orthonormal matrix which has an inverse matrix. Thus, one can either transform 

the coordinates (x’, y’, z’, u’) of a point within 4DRF=K’ into the coordinates (x, y, z, u)  within 

4DRF=K of the same point, or use the inverse matrix to transform the coordinates (x, y, z, u) within 

4DRF=K of a point into the coordinates (x’, y’, z’, u’) within 4DRF=K’ of the same point. 

 When the two 4D Cartesian reference-frames have non-coincident origins, the vectors s’ and s 

within each reference-frame, which reference the same 4D point, are not invariant: However, since they 

are the position-vectors of the same coincident coordinate-points within 4DRF=K’ and 4DRF=K, the 

latter point can be considered as being an “invariant-point” (the same point) within the 4D manifold. It 

is thus also in this case mathematically possible to have a coordinate-transformation which is 

isomorphic and which has an inverse transformation. 

Owing to the similarity of Eq. 4 to Eq. 3, it has been argued by Minkowski [4] that the 

Lorentz-transformation is a 4D rotational coordinate-transformation which maps the 4D coordinates (x’, 

y’, z’, ict’) as referenced within a 4D space-time reference-frame STRF=K’ (with four orthogonal 

Cartesian coordinate-axes) in a one-to one manner onto the space-time coordinates (x, y, z, ict) within 

another 4D space-time reference-frame STRF=K (also with four orthogonal Cartesian coordinate axes). 

Since the Lorentz-transformation has been interpreted as a rotation within a 4D space-time manifold, it 

has been concluded that this isomorphism defines invariant vector-positions for each space-time point. 

Thus, it has been accepted for more than 100 years that the two corresponding sets of coordinates (x’, 

y’, z’, ict’) and (x, y, z, ict) must be the coordinates for the same invariant vector-position of a point 

within a four-dimensional space-time manifold; and therefore the coordinate-transformation must have 

an inverse transformation. 

Equations have thus also been derived from Eq. 3 for the inverse Lorentz-transformation, 

which maps the space-time coordinates (x, y, z, ict) within STRF=K, in a one-to-one manner back onto 

the corresponding space-time coordinates (x’, y’, z’, ict’) within STRF=K’, which is referenced by the 

same invariant four-dimensional vector s within a space-time manifold. That there must be such an 

inverse coordinate-transformation, is justified in textbooks by showing that when you use the Lorentz-

transformation from (x’, 
 
y’, z’, ict’) to (x, y, z, ict) in order to replace the coordinates within Eq. 1a, 

one obtains Eq. 1b, and when using the inverse Lorentz-transformation from (x, y, z, ict) to (x’, 
 
y’, z’, 

ict’) in order to replace the coordinates within Eq. 1b, one obtains Eq. 1a. This postulated, four-

dimensional space-time is at present known as a Minkowski space-time manifold. 

The use of Eq. 1a and Eq. 1b in order to obtain Eq. 2 and Eq. 3 is, however, mathematically 

suspect, since one is equating two expressions which are each separately, on its own, equal to zero. 

Equating a mathematical expression which is zero to another mathematical expression which is 

separately also zero is, in most cases, tantamount to dividing by zero: When doing this, one usually 

obtains an indefinite result. This can also be seen as follows: Eq. 2 implies that any point on the 

spherical wavefront, as referenced within the (say) IRF=K’, corresponds to any point on the spherical 

wavefront, as referenced within the IRF=K. This means that a single point, of all the coordinate-points 

on the wavefront as referenced around (say) 0’ within IRF=K’, relates simultaneously, in a one-to-one 

manner with each and every one of all the points on the wavefront as referenced around 0 within 
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IRF=K. This, in turn, means that the untransformed coordinates of a single space-time point on the 

wavefront, as referenced within its corresponding four-dimensional STRF=K’, are not restricted to 

transform into only one of the space-time coordinate-points that is on the wavefront, as referenced 

within another four-dimensional STRF=K. Such a transformation can thus not be an isomorphic 

transformation. 

In contrast, it is known that when using the equations of the Lorentz-transformation to trans-

form an event which is occurring at a time t at a spatial coordinate-point within an IRF into another IRF, 

relative to which it is moving, the untransformed and transformed space-time coordinates of this event, 

do actually form a unique pair of space-time coordinates: i.e the transformation must be isomorphic. 

This is strong evidence that Eq. 2 cannot be the “template-generator” for the equations of the Lorentz-

transformation. There must be another way to derive the equations of the Lorentz-transformation so 

that it will be clear from such a derivation that these equations actually do only map the space-time 

coordinates of a single coordinate-point within one IRF into a unique, single space-time coordinate-

point within the other IRF. 

Einstein’s second postulate clearly states that the speed of light must be the same within all 

IRF’s. This must surely mean that when a spherical wavefront is emitted at the coincident origins 0 and 

0’ of two IRF’s, an observer at 0 (OBS=K) will see this spherical wavefront receding from him/her 

within his/her IRF=K with a speed c; and an observer at 0’ (OBS=K’) within his/her IRF=K’ will 

likewise see this same spherical wavefront receding from him/her at the same speed c. This logical 

deduction from Einstein’s two postulates does not demand that the clocks of the two observers must 

keep different time-rates. In fact, one rather expects that the clocks should keep the exact same time so 

that after a time t=t’ the distance of this wavefront in any direction, as it manifests within each of the 

two IRF’s, should be exactly the same when measured from each origin. If this is not the case, the 

physics will be different within these IRF’s, and this will be in violation of Einstein’s first postulate. 

Furthermore, it is also well-known that within a four-dimensional manifold, referenced by two 

Cartesian coordinate-systems which are rotated relative to one another around the same origin 0=0’, the 

4D position-vector s of an invariant point can only be zero when one has that x=y=z=u and x’=y’= 

z’=u’=0: i.e. in terms of mathematical jargon the coordinates must be linearly-independent. In contrast 

the coordinates (x, y, z, ict) and (x’, y’; z’, ict’) are not each equal to zero for the expressions in Eq. 1 

to be valid, even though each quadratic expression, after moving the time-related coordinate to the 

other side of the equation, is separately zero. This means that the coordinates of a Minkowski space-

time manifold cannot be linearly independent, and that therefore the concept of a Minkowski space-

time manifold is most probably mathematically, and thus also physically, impossible. 

In the exploratory investigation reported here, the opposite a priori assumption will be made 

than the one that Einstein had made in 1905: It will be assumed that the two perfect clocks, after their 

synchronization, keep simultaneously the exact-same time ever after. If this assumption proves to have 

merit, the expressions in Eq. 1 must be written for any time t=t’≠0 that: 

 

     2222 )ct(zyx =++     (5a) 

And 
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            2222
)ct()'z()'y()'x( =++     (5b) 

 

To ensure that:           'tt =      (5c) 

 

There have been many publications questioning the validity of the interpretation of the 

Lorentz-transformation in terms of the deductions that Einstein’s had made from his Special Theory of 

Realtivity: Especially the concepts of “time-dilation” and “length-contraction”. Many of these publica-

tions have been based on wrong logic, and even anti-Semitic, political assaults on Einstein. But some 

of them, notably those by Dingle [5], have posed dilemmas which have not yet been satisfactorily 

answered by anybody. Hopefully the alternative derivation of the Lorentz-transformation presented 

here, even if it could also turn out not to be the best way to derive the Lorentz-transformation, might 

open up useful new insights when compared to the derivation based on the a priori assumption that 

time-dilation must occur. 

 

2. Emitting a spherical wavefront at the coincident origins 

Consider again a spherical wavefront which is emitted at the time t=t’=0 when the origins 0 and 0’ of 

the IRF=K and the IRF=K’ coincide. If, as assumed above, both clocks keep synchronous time so that 

t=t’ for all time after their synchronization, this single wavefront will at any time t>0 manifest as two 

separate, but identical wavefronts around 0 and 0’. The same wavefront, after an elapse of time t≠0 on 

both clocks, is shown in Fig. 1 by two dashed circles: Coordinates 22 zyr +=  and 22 'z'y'r +=  are 

used in order to emphasise that these spatially non-coincident circles are actually spheres. 
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Figure 1: An emitted wavefront (dashed circles) as observed around the origins 0 of an IRF=K and 0’of an 

IRF=K’, after these origins have moved a distance vt apart. Although it seems that it is now two wavefronts, it is 

actually the same single wavefront that is manifesting within the two separate IRF’s. The solid circles are this 

same wavefront as seen around 0 and 0’ at a later time t* after the origins 0 and 0’ have moved an increased 

distance vt* apart. 
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It must be emphasised that the two dashed-spheres in Fig. 1, which at the same instant in time 

t are non-coincident in space, constitute the same single spherical wavefront which manifests within 

the two different IRF’s at the same time t: But since there can only be a single wave-front, the 

manifestation around 0 within the IRF=K (which will be called the wavefront=K) does not occur 

within the IRF=K’. Similarly, the manifestation around 0’ within the IRF=K’ (which will be called the 

wavefront=K’) does not occur within the IRF=K. 

Consider a wavefront-detector which is stationary within the IRF=K’ at a point P’ at a position 

with coordinates (x’, r’) within IRF=K’: Since this detector is stationary within IRF=K’ we will call the 

latter IRF this detector’s proper IRF. Assume that the wavefront=K’ reaches the coordinate-point P’ of 

the detector at the time t on both clocks (see Fig. 1). When the time increases further, this 

wavefront=K’ expands further while the detector-position P’, with coordinates (x’, r’), remains 

stationary within IRF=K’: But the coordinate-position of this detector is not stationary within the 

IRF=K. 

The coordinate-point P(t) within the IRF=K, which is coincident with the stationary 

coordinate-point P’ of the detector within IRF=K’, changes with time within the IRF=K in order to stay 

coincident with the stationary coordinate-point P’ within the IRF=K’. It means that there must be a 

stationary coordinate-point PI=(xI, rI) within IRF=K which is coincident with the stationary coordinate-

point P’=(x’, r’) of the detector within IRF=K’, when the wavefront=K’ reaches this detector at the 

instant in time t. From this perspective it means that the arrival of the wavefront=K’ at the detector is 

actually occurring coincidently and simultaneously within both IRF=K’ and IRF=K since P’ and PI 

actually do coincide at the time t: However, since the wavefront=K’ does not manifest within IRF=K, 

this event cannot be recorded within IRF=K at the time t at which it manifests within IRF=K’. 

At the instant in time t on both clocks, at which the wavefront=K’ reaches the detector within 

the IRF=K’, the wavefront=K within IRF=K has a maximum reach from 0 which is given by the radius 

ct of this wavefront around 0 at the time t. The event at point P’ (see Fig. 1), when the K’-wavefront 

reaches the detector, can thus not be time-referenced on the wavefront=K at that same instant in time t; 

since there is no point on the wavefront=K that is in coincidence with the point PI=(xI, rI) within IRF=K. 

The event can only be time-referenced relative to 0 once a point on the wavefront=K reaches the 

position-coordinates P*=(x*, r*), where the point P* within IRF=K is coincident with point P’ of the 

detector within IRF=K’: And this is only possible at another time t*. Thus, the two manifestations of 

the same wavefront within IRF=K’ and IRF=K reach the same detector at two separate times t and t*, 

each of which is simultaneous on both clocks within IRF=K’ and IRF=K. 

 Another detector can be be chosen to be stationary at a point Q, but now within IRF=K: i.e. 

IRF=K is now the proper IRF of the latter detector. In Fig.1 this detector has been chosen to be 

symmetrically situated from the detector at P’ within IRF=K’ when the origins 0 and 0’ coincide: In 

this case, the wavefront=K around 0 within IRF=K, will reach this stationary detector, at point Q 

within IRF=K, at the same time t that the wavefront=K’ reaches the stationary detector at P’ within 

IRF=K’. In turn, the wavefront=K’ will reach the detector which is stationary within IRF=K at a 

coordinate position Q’*=(x’*, r’*) within IRF=K’ at another time t’*. Note that owing to the 
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symmetrical positions of the two detectors, which have been chosen in Fig. 1 to be stationary within 

IRF=K’ and IRF=K respectively, one must have in this specific example that r’*=r* and t’*=t*. 

 Since the wavefront=K’, emitted at the origin 0’ within IRF=K’, reaches the stationary-

detector within IRF=K’ at a time t, and the wavefront=K emitted at the origin 0 within IRF=K reaches 

the same detector at a later time t*, this implies that the same detector should  detect the same 

wavefront at two different times. It is, however, well known that a detector can only detect the same 

wavefront once; no matter how fast the detector is moving relative to any other IRF. 

We also know experimentally that when a source and a detector are co-stationary, the emitted 

wavefront must be recorded by the detector when it reaches the detector. This can be verified by 

having a detector attached to a recorder, and then afterwards walking from the source to the detector 

and checking the time at which the event was recorded after the wavefront=K’ has been emitted. The 

wavefront=K’ is emitted from 0’ which is stationary relative to the detector within IRF=K’: The origin 

0’ thus acts as a stationary source within IRF=K’ for this wavefront=K’. Therefore it is compelling to 

argue that the wavefront=K’ which is spreading out from the origin 0’ must be recorded by the co-

stationary detector at point P’ at the instant in time t. 

This means that when the wavefront=K reaches this detector, which is stationary at point P’ 

within IRF=K’, at a later time t*, it cannot be detected by this detector for two reasons: (i) It is the 

same wavefront that the detector has already detected; (ii) This wavefront is not manifesting within the 

IRF=K’ within which the detector is stationary since it has been emitted from the point 0 which is not 

co-stationary with the detector within IRF=K’: However, an observer within IRF=K, will be convinced 

that the detector should have detected the wavefront=K at time t*, since according to him/her the 

wavefront=K only reaches this detector at the time t*. 

It is of course possible for the observers to communicate by radio. Assume that OBS=K’ 

reports to OBS=K that the wave-front reached the detector at time t. One can imagine the following 

conversation if they did not expect this result: OBS=K: It is impossible that you could have recorded 

the time t since the wavefront only reached the detector at a later time t*: Your clock-rate must thus be 

slower than mine. OBS=K’: That is impossible since we both have the best identical clocks in the 

universe: Furthermore I have walked to the detector and checked, while you cannot do this: So you 

must be wrong. OBS=K: Well, by good luck it just happened that I have had a stationary detector that 

coincided with your detector when the wave-front reached both detectors simultaneously: I walked 

over to my detector and it recorded t*. Is it maybe possible that, owing to the fact that you are moving 

away from me, your clock actually keeps time at a slower rate than my clock? OBS=K’: Rubbish! Our 

motion is relative: You are also moving away from me as if I am stationary: This must then surely 

imply that your clock should also keep time at a slower rate than my clock. Etc. etc. etc. Hopefully 

(after 100 years?) they will realize that what is really happening is that the positions in space at which 

the wavefront=K and wavefront-K’ reach the detector are not coincident, since the two manifestations 

of the same wavefront is not simultaneously coincident within IRF=K and IRF=K’. The clocks actually 

keep the exact same time. 

In order to distinguish the real detection-event at time t within IRF=K’ from the detection 

event at time t*, as deduced from within IRF=K, the detection-event at time t will be called a primary 
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detection-event at the position of the detector within its proper IRF=K’. When the wavefront=K 

reaches this detector, the wavefront=K cannot be detected and recorded by this detector; so that when it 

arrives at the detector within IRF=K its detection will be a non-event. But this non-event is referenced 

by the arrival of the wavefront=K at the detector within IRF=K’ at the time t*. Thus, the arrival of the 

wavefront=K’ at the detector within IRF=K’ is the primary arrival-event of the wave-front at the 

detector and the arrival of the wavefront=K at the detector is the non-primary arrival-event of the 

wavefront at this same detector that is moving relative to the emitting point 0 of the wavefront=K. 

When, however, the wavefront=K reaches the detector which is stationary at a point Q within 

IRF=K, it reaches a detector which is stationary relative to the origin 0 at which the wavefront=K had 

been emitted. Thus, this wavefront will now be detected by this detector within IRF=K, while the K’-

wavefront will not be detected when it reaches this detector at point Q’* within IRF=K’, even though 

from the perspective within IRF=K’ it should have been detected. Thus, in this case the primary-arrival, 

which results in an actual detection-event, occurs when the wavefront=K reaches this detector at time t, 

and the non-primary arrival which results in non-detection occurs when the wavefront=K’ reaches this 

same detector at the time t*. 

Does this mean that when a light-source and a detector are not co-stationary, an emitted 

wavefront will not be detected? We know experimentally that the latter is not the case. The fact is that 

up to now, the position of the actual light-source when it emits the wavefront at the position where the 

origins 0 and 0’ coincide at time t=0, has not been specified. In fact, in this specific example, it need 

not be specified since the position of the source, when it emits the wave-front, is instantaneous-

simultaneously at the coincident origins 0 and 0’. The actual light-source can thus be stationary within 

IRF=K or it can be stationary’ within IRF=K’, without affecting the conclusions which have been 

reached so far. Therefore, in this specific case, the proper IRF of the light-source, within which this 

source is stationary, can be either the IRF=K or the IRF=K’. 

But this can only be so at the position and time t=0 at which 0 and 0’ coincide (see section 

4.3). If the source is stationary within IRF=K’, this source emits the wavefront=K’ within IRF=K’, 

which in turn, causes the non-primary emission of a wavefront=K within IRF=K. The emission of the 

wavefront=K’ within IRF-K’, from a source that is stationary within IRF=K’, will thus be called a 

causal event. The concomitant appearance of the K-wave-front within IRF=K, will be called a caused 

event: The reason is that it will not be emitted within IRF=K when the wavefront=K’ is not emitted by 

the actual source within its proper IRF=K’. Similarly, a source that is stationary within IRF=K can emit 

a wavefront=K which causes a wavefront=K’ within IRF=K’. 

The causal emission of the wavefront=K’ within IRF=K’, is thus a primary-event within the 

proper IRF=K’ of the light-source, which causes the non-primary-emission of the wavefront=K within 

IRF=K. But although, the emisssion of the wavefront=K within IRF=K is a non-primary-event, the 

wave-front and its motion within IRF=K are, in this case, not non-events but are just as real within 

IRF=K as the wavefront=K’ and its motion are within IRF=K’. That is why the wavefront=K can, in 

turn, be responsible for a primary event within IRF=K, when it is recorded by the detector which is 

stationary at the point Q within IRF=K; which thus, in turn, causes a non-primary arrival-event for the 

wavefront=K’ at the point Q’* within IRF=K’. 
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3. A possible derivation of the Lorentz-equations 

The coordinate axes of the IRF=K and the IRF=K’ are shown within Fig. 2 after they have moved a 

distance vt apart, and also after they have moved a longer distance vt* apart. The IRF=K is assumed to 

be stationary while the proper IRF=K’ of the detector is assumed to be moving with the speed +v along 

the +x-axis of the IRF=K. 
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Figure 2: The coordinate axes, at two different times t and t*, of a stationary three-dimensional inertial reference-

frame (IRF=K) and a three-dimensional inertial reference-frame (IRF=K’), which is moving with a speed +v 

relative to IRF=K. A primary-event occurs within the moving IRF=K’ at a stationary position P’ within IRF=K’ at 

the time t. Since the latter coordinate-point is moving within the IRF=K, it has to be referenced by a time-

coordinate as measured from the origin 0 within the three-dimensional IRF=K in order for the primary-event 

within IRF=K’ to manifest at a point P* within the IRF=K as a non-primary-event. 

 

Consider again the primary-event that occurs on the K’-wavefront at a point P’ with the 

coordinates (x’, r’=R)=(x’,y’,z’) within the IRF=K’, when this wavefront reaches the detector within 

the IRF=K’ at the simultaneous time t on both clocks within the IRF=K’ and the IRF=K. As already 

argued above, the K-wavefront cannot reach the coincident point (xI RI) within the IRF=K at the same 

time t at which the K’-wavefront causes this primary detection-event relative to 0’; since the K-

wavefront only reaches a point P* within IRF=K which is coincident with the coordinate-point P=(x’, 

R) within IRF=K’, after wavefront=K has moved to reach the point P* with coordimates (x*, r*=R) 

within the IRF=K: And this non-primary arrival-event can only occur at another, later time t*≠t on both 

clocks. 

The pathlength of the wavefront=K from 0 must thus have a length ct* at the time t* on both 

clocks within both IRF’s when the non-primary arrival-event occurs: It is given by the hypothenuse of 

the right angle made by R and x: So that from the theorem of Pythagoras one must have that: 
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   222222 *)ct(*)z(*)y(*)x(R*)x( =++=+    (6a) 

 

In turn, the path of length ct  within the IRF=K’, when the primary arrival-event occurs at the simulta-

neous time t on both clocks, is the hypothenuse of the right angle made by R and 'x , so that from the 

theorem of Pythagoras one must have that: 

 

   222222
)ct()'z()'y()'x(R)'x( =++=+    (6b) 

 

When replacing t with t’ and t* with t, these expressions seem to be the same as those in Eq. 1. But 

they are not the same, since they have been derived by assuming that Eq. 5 is valid. The time t* in Eq. 

6a is thus not simultaneous with the time t given by Eq. 6b; and the position-coordinates are also not 

coincident. The untransformed and transformed space-time coordinates do thus not coincide at the 

position of an invariant 4D position-vector s as Minkowski [4] had argued in 1908. 

It is now clear why the expressions in Eq. 6a and Eq. 6b, cannot be equated in order to obtain 

an equation which is concomitant to Eq. 2 and Eq. 3, as had been done for the past 100 years for the 

expressions in Eq. 1a and Eq. 1b: The expressions 6a and 6b are those for two rectangular triangles that 

do not have proportional lengths for their sides, and that have different angles φ and φ’ relative to the 

direction of motion. By using complex-number notation one can, however, rewrite the expresions in Eq. 

6 to become: 

 

    222
)iR(*)ict(*)x( =+     (7a) 

And 

    222
)iR()ict()'x( =+     (7b) 

 

In this case the expressions on the left are not each separately equal to zero, so that they are now 

mathematically related in a one-to-one (albeit strange) manner: i.e. x’→x* and time t→t*; as they 

should be to form a template from which an isomorphic transformation can be derived for a primary-

event within IRF=K’ into its non-primary counterpart within IRF=K: One can thus write, without 

violating the requirement that each space-time point must be mapped in a one-to-one manner, that: 

 

    2222
)ict()'x(*)ict(*)x( +=+    (8) 

 

This equation, and not Eq. 3, is a more logical template-equation to use in order to derive the Lorentz-

transformation for a one-to-one mapping of event-coordinates. 

The relationship between the Lorentz-transformed coordinates x’→x* and t→t*, of a primary-

event within IRF=K’ into its non-primary counterpart within IRF=K, must thus be given by a 2x2 

matrix, so that one can write that: 
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From Fig. 2: 

 

     *vt'x*x +=     (9b) 

 

Replacing x* within Eq. 9a from Eq. 9b leads to: 

 

    *vt)ict('x)1( 1211 −α=−α     (10a) 

Eq. 9a also gives that: 

    )ict('x*)ict( 2221 α+α=     (10b) 
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Figure 3: The coordinate axes, at two different times t and t*, of a stationary three-dimensional inertial reference-

frame (IRF=K) and a three-dimensional inertial reference frame (IRF=K’), which is moving with a speed +v 

relative to IRF=K’. A primary-event occurs within the IRF=K’ at position P’ with x’-coordinate x’=0 at the time t. 

Since this point is moving within the IRF=K, it has to be referenced by a time-coordinate as measured from the 

origin 0 within the three-dimensional IRF=K in order to manifest as a non-primary event at point P* within the 

IRF=K. 

 

It will now be asuumed that these equations must be valid for any position of the stationary 

detector within IRF=K’. Thus, one can also choose x’=0: The corresponding situation to Fig. 2, is then 

as shown in Fig. 3. Since R=ct, one obtains for the two different times on both clocks from the 

theorem of Pythagoras that: 
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Note that this is the formula has been interpreted since 1905 as proving that time-dilation occurs; so 

that γ is sometimes called the time-dilation factor. According to the present derivation, it it is the 

relationship between two separate times each of which is recorded simultaneously on the clocks 

within the IRF=K’ and the IRF=K. Since this factor first appeared when Michelson and Morley did 

their seminal experiments [6], it might be more appropriate to call it the Michelson-factor.  

From Eq. 10a one has, for x’=0, that: 

 

     )ict(*x 12α=     (12a) 

 

Combining this result with Eq. 9b, for x’=0, substituting from Eq. 11, and using β=v/c one obtains that: 
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And from Eq. 10b that: 

 

                )ict(*)ict( 22α=     (12c) 

 

So that after combining with Eq. 11, one has that: 
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By now replacing α12 in Eq. 10a from Eq. 12b, and replacing α12 in Eq. 10b from Eq. 12d, one can 

solve for α11 and α21: The solutions are: 
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So that 
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Thus, the Lorentz-transformation of the x’-position and concomitant time t on both clocks of a 

primary-event within the IRF=K’ into its non-primary counterpart within IRF=K, relative to which the 

IRF=K’ is moving with speed +v, follows from Eq. 11 as: 
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Where t* is the time on both clocks within IRF=K’ and IRF=K when the non-primary event occurs 

within IRF=K. The y’ and z’ coordinates are not affected. 

During the past 100 years these equations have been applied by assuming that they are valid 

for any coordinate-pair x’ and r’=R (also zero) and thus also for any concomitant values of the angles 

φ’ and φ (also when they are zero so that R is zero): Even when such a coordinate position does not 

define coordinates (x’, r’) within the IRF=K’ which have ct as their hypothenuse: If this is correct, and 

it seems from experience that it might be corect, this is quite an amazing result; since, in order to derive 

these equations, by assuming the emission of a single wavefront from 0’ and 0, we had to choose the 

value of x’ and R to define a hypothenuse that is given by ct. 

On the other hand, the coordinates of the transformation-matrix have, just now, been derived 

by assuming that the transformation derived from Eq. 8 must be valid for any value of x’ at any time t. 

Furthermore, after the derivation of the template given by Eq. 8, the distance R, which is required to 

have a hypothenuse with length ct, does not appear within this equation anymore. It could be that it is 

for the latter reasons why the coordinates do not have to define a hypothenuse with length ct. It thus 

seems that the derivation for a specific situation has given a general solution to the problem. It might 

also indicate that there could be a better template to use when deriving the Lorentz-transformation. A 

better starting point might be the Doppler-effect (see section 4.3). 
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It is, however, clear that the derivation presented here, in contrast with the conventional 

derivation, does define a coordinate-transformation which gives a one-to-one relationship between the 

space-time coordinates of a primary-event within a proper IRF, into a unique single space-time point 

for the concomitant non-primary event, as referenced within another, non-proper IRF; but the two 

space-time coordinate-points do not reference coincident coordinate-points within 3D space, and also 

not within a 4D space-time manifold: i.e. the two times are not coincident times on their respective 

clocks. The untransformed and transformed space-time coordinate-points can thus not be referenced by 

an invariant space-time vector within a 4D space-time manifold. 

There must also be Lorentz-equations for the transformation of a primary-event within IRF=K, 

into its corresponding non-primary event as observed from within IRF=K’. In this case these equations 

have to be derived by assuming that IRF=K’ is stationary while  IRF=K moves away from the origin 0’. 

This symmetrical situation, shown within Fig. 1, is given by the points Q within IRF=K and Q’* within 

IRF=K’. Figure 2 and 3 must now be drawn as if it is the IRF=K that is moving relative to the IRF=K’: 

For example, Fig. 3 can be reconstructed to give Fig. 4. 
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Figure 4: The coordinate axes, at two different time t and t*, of a stationary three-dimensional inertial reference-

frame (IRF=K’) and a three-dimensional inertial reference-frame (IRF=K), which is moving with a speed –v 

relative to IRF=K’. A primary-event occurs within the IRF=K at position Q with x-coordinate x=0 at the time t. 

Since this point is moving within the IRF=K’, it has to be referenced by a time-coordinate as measured from the 

origin 0’ within the three-dimensional IRF=K’ in order to manifest as a non-primary event at point Q’* within the 

IRF=K’. 

 

By now following the same route that had been followed above, the Lorentz-transformation of 

the primary event at point Q within IRF=K into the non-primary event at point Q’* within IRF=K’ can 

be derived. Note, however, that within Fig. 4, the IRF=K is moving with a speed –v relative to the 

origin 0’ of the IRF=K’. Thus, in this case, the equation that is equivalent to Eq. 9b above becomes: 
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*vtx*x −=      (15) 

 

The transformation from the primary coordinate x at the primary time t within IR=K into the corres-

ponding non-primary coordinates x’* and t* within IRF=K’, is found to be given in this specific case, 

by: 
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Thus, the equations for the latter Lorentz-transformation from IRF=K into IRF=K’, follows 

from Eq. 16 as: 
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The minus sign in Eq. 17 appears since the origin 0 of IRF=K is moving away from the origin 

0’ of IRF=K’ with the speed –v: However, the choice of the positive x-direction is arbitrary. One could 

just as well have chosen the x- and x’-directions so that the origin 0 of IRF=K is moving with a speed 

+v from the origin 0’ of IRF=K’. The diagram that is then equivalent to the diagram in Fig. 4 is shown 

in Fig. 5. 

If one now derives the Lorentz-transformation for a primary event within IRF=K into its non-

primary counterpart within IRF=K’ by using Fig. 5, the transformation matrix is not the one in Eq. 16, 

but it is exactly the same as the one in Eq. 13. Thus, in reality, both matrices only transform a primary 

event from within such an event’s proper IRF unidirectionaly into its non-primary counterpart as 

referenced within a non-proper IRF relative to which the proper IRF is moving with a positive speed +v. 

The one matrix is not the inverse of the other in the sense that one matrix transforms a primary event 

into a non-primary event, while the other matrix then transforms the latter non-primary event back into 

its primary counterpart. One is transforming the coordinates of primary physics-events, not just map-

ping coordinates as if they do not have to relate to primary-events. 

It should now be crystal clear that the primary-event within its proper IRF, causes the non-

primary event within the non-proper IRF relative to which the proper IRF is moving. When the 

primary-event does not occur, there will not be a concomitant non-primary event within a non-proper 

IRF. The primary-event is thus a causal-event and the non-primary-event is a caused-event. The trans-
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formed space-time coordinates of a causal-event into the event which it is causing, can thus not be 

transformed back into the coordinates of the cuasal event within its proper IRF: This is so since a 

caused event cannot, in turn, cause the event that has caused the caused event (see also section 4.2). 

It has, however, been accepted since 1905 that the coordinates of a non-primary, caused-event 

can be transformed back into its primary causal-event. This confusion would not have existed if  the 

speed, when two origin’s 0’ and 0 are moving apart, had been chosen consistently as being positive 

when measured from either 0 or 0’ respectively. 
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Figure 5: The coordinate axes, at two different time t and t*, of a stationary three-dimensional inertial reference-

frame (IRF=K’) and a three-dimensional inertial reference-frame (IRF=K), which is moving with a speed +v 

relative to IRF=K’. A primary-event occurs within the IRF=K at position Q with x-coordinate x=0 at the time t. 

Since this point is moving within the IRF=K’, it has to be referenced by a time-coordinate as measured from the 

origin 0’ within the three-dimensional IRF=K’ in order to manifest as a non-primary event at point Q’* within the 

IRF=K’. The only difference, when compared to Fig. 4, is that the positive x- and x’-direction has been chosen to 

be in the opposite direction than in Fig. 4, so that the speed changes from being negative to being positive. 

 

4. Consequences 

4.1 God’s red herring 

It is fascinating to note that although the Lorentz-transformation does not have an inverse that makes 

physics-sense, the matrices in Eq. 13 and Eq. 16 are actually mathematically inverse; even though this 

is just a fortuitous accident caused by the sign of the speed with which the IRF’s move relative to one 

another. Nonetheless, when one multiplies Eq. 13 with the matrix of Eq. 16, one does get the 

mathematical result that the coordinates (x*, ict*) of the non-primary event are transformed back into 

the coordinates (x’, ict) of the primary event that causes the non-primary event. Similarly when multi-

plying Eq. 16 with the matrix of Eq. 13, one gets the mathematical result that the coordinates (x’*, ict*) 
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of this non-primary event are transformed back into the coordinates (x, ict) of the primary event that 

causes this non-primary event. 

We must, however, never forget that mathematics does not determine physics, but that physics 

determines when and how mathematics must be applied. The classical example that this is so, is the 

epicycles which had been used in Ptolemy’s model of the Universe: In this case, mathematics seems to 

give the correct solutions for the paths of the planets, but in actual fact it is not modelling the real 

physics involved. 

Thus, although mathematics does give an inverse matrix for the speed –v, to the one in Eq. 13 

derived for the speed +v, this is misleading, since one should ask what is the inverse physics that must 

be valid: And as derived above, the physics clearly demands that the Lorentz-transformation cannot be 

applied as purely a coordinate-tranformation. The Lorentz-tranformation, which has been interpreted, 

since 1905, as an inverse coordinate-transformation of an invariant space-time point, is in fact in all 

cases the very same unidirectional transformation that only transforms a primary-event from within this 

event’s proper IRF into another non-proper IRF relative to which the proper IRF is moving with a 

speed +v. The resultant non-primary-event caused by the primary event cannot be transformed back 

into the primary-event’s proper IRF. In fact, this has been already known for 400 years, after Galileo 

explained the concept of relativity [7] (see also section 4.2 below). 

What is even more intriguing, is that the matrices in Eq. 13 and Eq. 16, are not just mathe-

matically inverse matrices, they are also orthonormal matrices. Mathematically, they can be interpre-

ted as operators which are caused by an actual rotation within a two-dimensional manifold within 

which the positions of the space-time coordinates are invariant. In his youth Einstein stated that: “God 

is not malicious, He is only subtle”. It seems that when it comes to the Lorentz-transformation God 

decided to be “subtly-malicious” by deliberately presenting physicists with a red-herring. No wonder 

that Einstein in his old age stated that “Maybe God is malicious!”. It is probaly better not to blame God, 

but to be honest and to state that we physicists are not as clever as we are pretending to be: We did not 

succeeed to avoid all the pitfalls we encountered since 1900. In fact, since 1927, we have most 

probably led physics back into the dark ages of superstition. 

 

4.2 Relativistic reality 

Galileo contemplated a ship which is travelling smoothly with a constant unidirectional velocity v: He 

concluded that an observer within an enclosed cabin on such a ship will not be able to do any mecha-

nical experiment from which it can be deduced whether the ship is uniquely stationary in the universe 

or actually moving [7]. Einstein extended this concept to include the measurement of the the speed of 

light (see section 1 above). 

This concept of Galileo is at present known as inertia. Since the observer must conclude that 

he/she is uniquely stationary, he/she, when opening a porthole and seeing another ship passing by side-

by-side, will conclude that it must be the other ship that is moving. Similarly, an observer within a 

cabin of the passing ship will, for the same reason, conclude that his/her cabin is uniquely stationary. It 

is for this reason that such reference-frames have become known as inertial reference-frames (IRF’s). 



 19 

If an experimenter (OBS=K), who believes that his/her IRF=K is uniquely stationary, “looks 

out” of his/her IRF=K into a passing IRF=K’ within which another experimenter (OBS=K’) is doing an 

experiment, OBS=K will not observe the same physics-events that he/she observes for the same 

experiment when this experiment is being done within his/her own IRF=K. Although the same 

experiment must give the same identical results within each IRF, what he/she will observe is generated 

by transforming the primary coordinate-events of the experiment within the moving IRF=K’ into 

his/her stationary IRF=K. What he/she observes when looking into the passing IRF=K’ is not caused 

within his/her own stationary IRF=K, but is caused by the primary-events occurring within the passing 

IRF=K’. Therefore one cannot transform these caused events back into the IRF within shich they are 

being caused. 

Similarly, what OBS=K’ will see when looking into the cabin of OBS=K, is not what is 

actually happening in the cabin of OBS=K, but will be a coordinate-transformation of the primary 

physics-events that are actually originating within the cabin IRF=K. To transform these transformed 

coordinates of the non-primary physics-events within IRF=K’ back into the untransformed coordinates 

of the primary physics-events within IRF=K, which cause the non-primary physics-events, serves no 

physics-purpose whatsoever. A relativistic coordinate-transformation serves only one physics-purpose, 

and that is to unidirectionally transform primary-events, which are occurring within a “moving” IRF 

into a “stationary” IRF relative to which the primary-events are moving:  Even when the mathematics 

is invariant to allow a reverse transformation of the coordinates, the physics-equations cannot be 

invariant under such a transformation. 

Consider the classical example of an aeroplane that drops a bomb. Since the aeroplane moves 

at a low speed, one can use the Galilean transformation. The primary-event within the IRF=K’ of the 

aeroplane, is to release the bomb from within the aeroplane: This causes the non-primary event that 

manifests as a horizontal launching of the bomb within the IRF=K attached to earth. The latter can 

obviously not be a primary event within the IRF=K of the earth, since this launch did not require a 

horizontal force within the latter IRF. It can thus not be transformed back into the aeroplane as if this 

horizontal launch is causing what is caused from within the areoplane. 

If one, however, has a hovering helicopter which launches a horizontal missile with a speed v, 

just when an aeroplane passes at the same height with the same speed v, the primary-event will be 

within the IRF=K of the earth, while the non-primary event will be the downward launching of the 

missile relative to the aeroplane without having to release it from within the aeroplane. It is thus a non-

primary event within the IRF=K’ of the aeroplane caused by the primary launching of the missile by 

the helicopter. Clearly, one can only unidirectionally transform the coordinates of such a primary-event 

into the coordinates of its concomitant non-primary event that it is causing within another IRF, but not 

inversely transform the coordinates of the non-primary event back into the coordinates of the primary 

event without believing that there are “miracle-events” without any cause. Thus also in the case of the 

Galilean-transformation of coordinates, the physics involved constrain this transformation to be 

unidirectional even though the mathematics seems to allow an inverse transformation. 

The difference between the Lorentz-transformation and the Galilean-transformation is that, for 

the Galilean-transformation, the untransformed and transformed position-coordinates of a primary-
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event, and its non-primary counterpart, always coincide in space and time, while for the Lorentz-

transformation this coincidence only occurs at the origins of the two IRF’s when these origins 0 and 0’ 

coincide at time t=0. At any other time, as referenced relative to these origins, which are then not in 

coincidence, the position-coordinates and time of a non-primary event do not coincide with the 

position-coordinates and time of its concomitant primary event. 

It will be seen below (in sections 4.3 and 4.4) that the relationship between a primary-event 

and its Lorentz-transformed non-primary-event is determined by where in space the coincident origins 

0 and 0’ are chosen to be at the time t=0. Different choices give different perspectives for the conco-

mitant non-primary event caused by the same primary-event within its proper moving IRF. 

Galileo’s inertia has been embedded in Newton’s first law: According to this law any moving 

entity with rest mass m0 has a unique IRF within which it is stationary. Such an IRF will thus be this 

stationary entity’s proper IRF; just as the IRF’s, within which a light-source and/or a wavefront-

detector are respectively stationary, are the proper IRF for the light-source and the proper IRF for the 

detector. The motion of a stationary entity with rest mass m0, when viewed from any other IRF that 

moves relative to this entity’s proper IRF, is not an absolute motion through space, since this same 

entity is simultaneously moving with different velocities, which are determined by the different 

velocities of all the other IRF’s. The primary-state of a moving entity with rest-mass m0 must thus be 

its stationary-state within its proper IRF. Its non-primary state is to move within one of its non-proper 

IRF’s without being propelled by a force, even though the path it follows within the latter IRF is a real 

path within this IRF. To obtain the latter motion, one must transform the coordinates of the entity’s 

primary stationary-state from its proper IRF into the IRF within which the motion is occurring. 

 

4.3 Moving light sources 

4.3.1 Receding light-source 

Consider a light-source at the origin 0’ within IRF=K’: It must have a rest-mass m0. It emits a 

wavefront at time t=0 when the source coincides with the origin 0 at which a detector is stationary 

within IRF=K. This IRF=K’ is thus the proper IRF for the source, and the IRF=K is the proper IRF for 

the detector. We will call the wavefront emitted at time t=0 the zeroth wavefront. Thus, the position-

time coordinates within IRF=K’, at which the wavefront is emitted, are (x’=0, t=0) and they are at that 

instant in time coincident with the coordinates (x=0, t=0) of the stationary detector within IRF=K. Thus, 

the wavefront is in this case emitted by the source within the source’s proper IRF, and instantaneously 

recorded by the detector within the detector’s proper IRF. 

After a time interval, ∆τ, the source has moved an actual distance x1=v∆τ from the detector; as 

referenced within IRF=K: If it now sends out a consecutive wavefront, numbered as wavefront 1, the 

coordinates of this primary-event within IRF=K’ are ((x’)1=0, t1=∆τ). But the source is moving relative 

to the detector, so that this emission-event within IRF=K’ is a non-primary event within IRF=K; which 

initiates a wavefront=K within IRF=K that propagates within IRF=K with the speed c. It will now be 

assumed that to find the the latter non-primary coordinate-position within IRF=K, caused by the 

primary emission within IRF=K’, one must Lorentz-transform the primary-emisson of the wave-

front=K’ within IRF=K’ into its non-primary emission within IRF=K. The latter transformed, non-
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primary coordinates of the emission-event within IRF=K, follow from Eq. 14 as: (x*)1=γv∆ τ and 

(t*)1=γ∆τ. 

Since the non-primary position-coordinate (x*)1 is a stationary-coordinate within IRF=K, the 

wavefront emits from this stationary position within IRF=K in order to follow a path to the co-

stationary detector within IRF=K, at which it can thus be detected (see section 2). Since the speed of 

light is c within all IRF’s, the detector will be reached after a time interval ∆T=(x*)1/c, when the time 

at the detector is: 
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The time tD1 is the time-interval ∆τD that elapsed at the detector between recording two consecutive 

wavefronts. 

The frequency ν with which the wavefronts are emitted at the source is the inverse of ∆τ, and 

the frequency νD with which these wavefronts arrive at the detector is the inverse of ∆τD, so that Eq. 

18a can be written in terms of these frequencies as: 

 

     
vc

vc

vc

c1

D +
−

ν=







+

νγ=ν −
   (18b) 

 

This is the Doppler-shift for a receding light source. 

Although the zeroth wavefront is emitted at time t=0, when the light-source is exactly coin-

cident with the detector, the first consecutive wavefront is emitted when the light source is an actual 

distance x1=v∆τ from the detector as measured within IRF=K. Similarly the second consecutive 

wavefront will be emitted when the source is an actual distance x2=2v∆τ from the detector, etc. 

Obviously, the nth wavefront will be emitted when the light-source is at an actual distance xn=nv∆τ 

from the detector. The corresponding distances and times at which the corresponding non-primary 

emissions occur within IRF=K are, however, (x*)n=γnv∆τ and (t*)n=γn∆τ which, for every value of n, 

is further away from the detector and occurring at a later time than the actual time tn at the coincident 

actual distance xn that the light-source is from the detector when it emits this wavefront. If the two 

clocks are keeping synchronous time, then according to the latter equations the light-source is not 

moving with a speed v relative to the detecttor, but is detected from the origin 0 within IRF=K to be 

moving with a speed γv. 

But since (x*)n/(t*)n=v, this also implies that the light-source must first move from the actual 

distance xn at which the primary emission-event occurs to the non-primary distance (x*)n in order to 

emit the n
th

 wavefront=K at the time (t*)n within IRF=K: However, although the source, if it keeps on 

moving along the same psth, will be at the position (x*)n when the n
th

 non-primary wavefront=K is 

emitted within IRF=K, it is also possible that the source might stop moving after it emitted the nth 

primary wavefront=K’ at the distance xn from the detector, and before it reaches the distance (x*)n from 
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the detector. This implies that the non-primary n
th

 wavefront=K might not be emitted, even though the 

primary n
th

 wavefront=K’ has already been emitted. 

The latter situation is unlikely: One expects that once the nth primary wavefront=K’ has been 

emitted, an n
th

 non-primary wavefront=K will be detected by the detector. Thus although the non-

primary emission of a wavefront=K is caused by the primary emission of its corresponding wave-

front=K’, the source does not actually emit the non-primary wavefront=K when it recahes a distance 

(x*)n from the detector. The non-primary wavefront=K is the manifestation of the primary wave-

front=K’ within IRF=K owing to the fact that this wavefront cannot be coincident with itself within 

IRF=K and IRF=K’ (see section 2). Therefore, the causal emission-event and the caused emission-

event are separated in time and space: i.e. as already concluded above, the untransformed and 

transformed coordinates cannot be represented by an invariant vector within either 3D space or within 

Minkowski’s 4D space-time. 

The non-primary distance (x*)n and time (t*)n for the emission of the n
th

 wavefront within 

IRF=K, cause the Doppler-effect: When the waves are not light-waves but waves which move within a 

medium (for example, sound through stationary air), the Doppler-effect occurs when either the wave-

source, or the detector of these waves, or both the source and detector move relative to the wave-

medium. In the case of light, there is no medium (ether), so that the speed of light must always have the 

same value c relative to both the light-source and the detector; no matter with what velocity they are 

moving relative to one another.  

This means that when the light-source and detector move relative to one-another, the Doppler-

effect mandates that the detector cannot detect the actual (primary) position xn and actual time tn, which 

are coincident within IRF=K’ and IRF=K; when the light source actually emits a wavefront within its 

proper IRF=K’ at this position and time. It can only detect the n
th

 wavefront when it appears at the non-

primary position (x*)n (which is stationary within IRF=K) and the non-primary time (t*)n within the 

detector’s proper IRF=K. Are these non-primary positions and times real or just apparent? It seems that 

they must be apparent within IRF=K since they are not the actaul coincident position and time at which 

the source emits the wavefront; but they cannot be ignored since they cause measurable physics-effects 

like the Doppler-effect (see also the discussion of the cosmic-ray muon in section 4.6). 

Assume that along the x-axis of IRF=K within which the “zeroth”-detector is stationary at the 

origin 0, one places a row of detectors spaced at distances τ∆=∆ vx D  apart. Thus, when the zeroth 

wavefront is emitted, the zeroth-detector at the origin is in coincidence with the source, and it 

immediately detects the wave-front. When the subsequent first wave-front is emitted, the the source is 

in coincidence with the first detector at the distance x1=∆xD from 0 when it emits the first wavefront, 

and when the second wavefront is emitted the source is in coincidence with the second dectector at the 

distance x2=2∆xD from 0, etc. Will these coincident detectors each time instantaneously record the 

coincident emitted wavefront? 

In principle such an experiment can be done so that an observer can afterwards walk from 

detector to detector to see at what times the detectors have recorded these coincident wave-fronts. I am 

convinced that such an observer will find that each wavefront has been instantaneously recorded by its 

coincident detector. But in each case, each detector cannot detect the other wave-fronts to be coincident 
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at the coincident times at which they have been emitted. Each detector thus act as an origin at which 

the primary wave-front is immediately recorded when it is emitted at its coincident detector: However, 

according to each detector this is not the case at the positions of the other detectors. Thus each detector 

gives another perspective on what is happening at positions which do not coincide with its position. 

Nonetheles, this means that at any and all times t, the actual position of the light-source 

relative to the detector is given by the Galilean coordinate-transformation, which demands that the 

distance from the zeroth detector must be x=vt at any time t. Thus, the light source itself is actually 

following a classical path, while from the perspective at the origin 0 of IRF=K the light-source is 

moving away from 0 with the speed γv. Which motion is really happening? One has to conclude that 

both is happening: However, the speed γv cannot be the actual path that the source is following through 

space since the untransformed and transformed coordinates for this speed are not coincident within 

IRF=K and IRF=K’, as one expects that they must be to model the actual path of an entity with mass 

through space. 

We have, however, concluded above that, according to the Lorentz-transformation, a statio-

nary entity with rest-mass m0 is a primary-entity within its proper IRF. In other words its motion 

should be caused by the Lorentz-transformation and not by the Galilean-transformation as the results 

above seem to demand. This issue will be considered further in section 4.4. 

 

4.3.2 An approaching light-source 

Here we will consider an approaching light source: Assume that the light-source is stationary within 

IRF=K’ at a coordinate-position L'x −=  from 0’. And assume that a detector is stationary at the origin 

0 within IRF. 

Assume now that at the time t=0, when the origins 0 and 0’ of IRF=K’ and IRF=K coincide, 

the light source emits a wavefront=K’ (which in conformation with the notation in section 4.3.1 will  be 

called the zeroth wavefront). The primary-emission of this wavefront within IRF=K’ thus occurs at the 

space-time coordinates ( L)'x( 0 −= , t=0), so that the corresponding non-primary coordinates from 

which the non-primary wavefront=K is emitted within IRF=K follow from Eq. 14 as:  
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To reach the detector at x=0, wavefront=K must move within IRF=K from (x*)0 for a time ∆T0 given 

by c/*)x(T 00 =∆ . The zeroth wavefront=K will thus reach the detector at the time tD0, where: 
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After a time interval, ∆τ, the source has moved a distance v∆τ towards the detector, and it then 

emits its next (number 1) wavefront=K’: The coordinates for this event within IRF=K’ are thus 

( L)'x( 1 −= , t1=∆τ), so that the corresponding non-primary coordinates within IRF=K follow from Eq. 

14 as: 
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This non-primary wavefront=K will thus start to move within IRF=K from the coordinate-position 

(x*)1 to reach the detector at x=0 after a time-interval c/*)x(T 11 =∆ . The time on the clocks tD1 when 

this wavefront reaches the detector is thus given by: 
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The time-interval ∆τD between the arrival of the zeroth wavefront at the detector and the subsequent 

wavefront follows from Eq. 19c and Eq. 20c, as: 
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The frequency ν with which the wavefronts are emitted at the source is the inverse of ∆τ, and 

the frequency νD with which the wavefronts arrive at the detector is the inverse of ∆τD, so that Eq. 21a 

can be written in terms of these frequencies as: 
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This gives the Doppler-shift for a source that approaches a detector. In contrast to Eq. 18b the 

frequency is now higher; as it must be. Note that the Doppler-shift of an approaching light-source 

demands that the wavefront must appear within IRF=K before it is actually emitted within IRF=K’. 

This seems to violate causality, but it cannot do so since the wavefront=K will not appear within 

IRF=K as a non-primary event, unless it is caused by the primary emission of a wavefront=K’ within 

IRF=K’. 

 But, eerily. the fact remains that the actual primary-event at time t within IRF=K’, appears as 

a non-primary event within IRF=K before it occurs within IRF=K’: It can, however, not manifest 

within IRF=K when it does not occur at all within IRF=K’. This implies that when the non-primary 

wave-front=K appears within IRF=K, the primary wavefront=K’ has not yet been emitted within 
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IRF=K’. This, in turn, implies that a future primary-event within IRF=K’ can be “predicted” by the 

appearance of its concomitant non-primary event within IRF=K. This situation raises interesting 

physics-questions which, however, fall outside the scope of this manuscript [8]. In the meantime, I 

propose that this effect should be called the Nostradamus-effect. 

 

4.4 Relativistic momentum and mass-energy 

Consider a point-mass that, in essence, is a centre-of-mass (COM) with rest-mass m0, which is statio-

nary at the position x’ within its proper IRF=K’, where the latter IRF is moving with a speed v relative 

to IRF=K. The Lorentz-transformed coordinates of the COM, are given by Eq. 14a and Eq. 14b. Since 

the time on both clocks is at every instant in time the same, one can differentiate these expressions with 

t: And since x’ is a constant within IRF=K’ it becomes zero when differentiated, so that one obtains 

that: 
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Since, as assumed in section 1, the time on both clocks must be simultaneously the same at any instant 

in time, it seems compelling to conclude from Eq. 22a that the COM must be moving with a  speed γv 

within IRF=K; just as it was found that the non-primary position-coordinate of the light source is 

moving when judged from the position of the detector that is stationary at the origin 0 of IRF=K: This 

is, however, not what has been found (just now in section 4.3.1) to be the actual situation for the 

motion of the light-source. It is only the perception when observed from the origin 0 within IRF=K. 

A moving COM has momentum p, which might be obtained by multiplying Eq. 22a with its 

rest-mass m0: In which case: 
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Where m has been interpreted for the last 100 years to be the dynamic mass of the COM, given by: 
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If this is correct, it means that an entity with rest-mass m0 does actually follow a classical Galilean-path 

within any IRF relative to which it is moving: The modification caused by the Lorentz-transformation 

is an increase in the mass of the entity. That this must be so has been experimentally verified many 

times. This means that dt* in Eq. 22b serves, in this case, to define the Michelson-factor γ that causes 
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this increase in mass, while the COM of the entity with mass actually follows a primary Galilean-type 

path within an IRF. 

Within textbooks Eq. 23b is derived by making ad hoc assumptions (see for example ref [9]). 

Here, it is derived directly from the Lorentz-transformation by assuming that all clocks keep the exact 

same time within all IRF’s and that therefore an entity with rest-mass must follow a classical path 

through space, albeit with an increased mass when its relative speed increases. 

When a force F acts on such a body with mass m, then, according to Newton’s second law, 

one must have that: 
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When the force is constant while the body moves a distance ds, the increase in kinetic-energy T of the 

body must be dT=Fds, so that from Eq. 24a, one must have that: 
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From Eq. 23b and using β=v/c, one obtains that  
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By integrating from v=0 to v=v in order to obtain the kinetic energy T, one obtains that: 
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This well-known equation proves that the total energy E of the body (with rest mass m0) when it moves 

with speed v within free-space must be: 

 

                2mc=E      (25) 

 

This is what Einstein also deduced, but he did it in an ad hoc manner. Here it follows directly from the 

Lorentz-transformation when assuming that the two clocks within IRF=K and IRF=K’ keep the exact 

same time and that an entity with mass must actually follow a classical path through space. 

 

4.5 Simultaneity 

Consider a double-ended laser “point”-source which is stationary at the origin 0’ within the IRF=K’: 

Assume that two wavefronts are emitted simultaneously at t=0 (on both clocks within IRF=K’ and 

IRF=K) along the +x’- and the –x’-axes. The wavefronts are thus emitted parallel to, and anti-parallel 

to the x’-axis. After a time t on both clocks, each of the two oppositely-emitted wavefronts has moved 

a distance ct=L'  from the origin 0’ within the IRF=K’. To find the corresponding Lorentz-transfor-
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med non-primary positions and times of these wavefronts within the IRF=K, one must use the expres-

sions in Eq. 14. 

For the parallel-emitted wavefront along the direction +x’, one has for the Lorentz-trans-

formed coordinate (L*)P, according to Eq. 14a, that: 
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And the Lorentz-transformed time is according to Eq. 14b: 

 

            
vc

vc
t

c

v
1

L)c/v(t
*)t(

2

2

2

P −

+
=

−

+
=    (26b) 

 

So that (L*)P/(t*)P=c: Just as it must be. 

 For the antiparallel-emitted wavefront along the direction –x’, one has for the Lorentz-trans-

formed coordinate (L*)A according to Eq. 14 that: 
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And the transformed time is: 
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So that (L*)A/(t*)A= c− . Again as it must be, since the light-front is moving with the speed –c within 

the IRF=K. 

 It should be noted that the transformed distances and times are determined by the Doppler-

factors given by the square-root expressions. It should alo be noted that according to Eq. 26b one must 

have that t*)t( P > , while according to Eq. 26d one must have that t*)t( A < . Thus, along the positive 

x-direction, the transformed wavefront reaches its transformed path-length (L*)P after the clocks have 

simultaneously reached the time t , while along the negative direction, the transformed wavefront 

reaches its transformed pathlength (L*)A before the clocks have simultaneously reached the time t . 

Again the latter result seems to violate causality: But as already pointed out in section 4.3.2 above, it 

does not do so, since the non-primary event would not have been recorded within the IRF=K at the 

coordinate 'Lγ− , if it had not been a primary-event within the IRF=K’. It is thus again a result of the 

Nostradamus-effect. 
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Within the IRF=K’, the two separate wavefronts reach the distances L’ and –L’ simulta-

neously. These two simultaneous times, at different positions L’ and –L’ within the IRF=K’ are, 

however, not simultaneous within the IRF=K. Both the transformed distance and transformed time 

jointly ensure that this is impossible. 

Einstein [10] explained non-simultaneity of transformed, simultaneous times at different posi-

tions by formulating a thought experiment of a train moving through a station when lightning simulta-

neously strikes the embankment at the nose of the train and the tail of the train. According to Einstein, 

an observer sitting in the middle of the train will conclude that the lightning strikes are not simulta-

neous since “he is hastening towards the beam of light coming from B (the nose), whilst he is riding on 

ahead of the beam of light coming from A” (the tail). Therefore he will see the light from the nose 

before he/she sees the light from the tail. What Einstein thus argued is that the speed at which light 

approaches the observer from the nose is higher than the speed at which the light is approaching the 

observer from the tail. 

It is amazing that Einstein did not realize that this explanation can only be valid when his 

second postulate is null and void. Any moving entity with rest mass defines its own proper IRF within 

which such a body is stationary: Since the observer is stationary within his/her own proper IRF, the 

magnitude of the speed of light approaching him from ANY source must be c and nothing else but c. 

The fact is that, no matter where the observer sits on the train, the lightning flash on the embankment at 

the nose of the train will register at an actual earlier time on the observer’s clock than the simultaneous 

lightning flash on the embankment at the end of the train. An observer need not even be present for this 

to be so. Thus, the position of the observer on the train has nothing to do with this non-simultaneity. 

The train can be empty, and the platform deserted, and it will still be the same result. An observer does 

not create physics by observing what is happening: Physics creates what an observer sees when he/she 

happens to be present! 

 

4.6 Absolute time 

From the analysis above, it is compelling to conclude that the a priori assumption that perfect clocks at 

any position in gravity-free space, whether stationary or moving relative to one another, must keep time 

at exactly the same time-rate, gives, except maybe for the non-intuitive Nostradamus-effect, self-

consistent results: Even so, the Nostradamus effect might turn out to be less paradoxical than the twin-

paradox which is caused by the assumption that time-dilation occurs. 

The conclusions arrived at so far, might thus be compelling evidence that the time-rate and 

synchronized time is actually absolute; just as Newton had assumed. This would mean that the 

difference in time obtained from the Lorentz-transformation for a primary event (which is transformed 

from its proper IRF into another IRF) is not simultaneously coincident on the two clocks situated 

within these two inertial reference-frames. Once synchronized, one perfect clock cannot show a 

different time than another perfect clock at the same instant in time ever again. 

The latter possibility places a question mark behind the results that had been measured when 

flying atomic-clocks around the world [11,12]: These experiments have been repeated with increasing 

accuracy since they were first done in 1971 and the same result has been extracted every time when 
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analyzing the data. According to these experiments, the flying clocks, when compared to a clock which 

stayed behind on earth, do actually show a time-decrease as predicted by Einstein from his Special 

Theory of Relativity, and since, according to the analysis of these results, they did actually lose this 

time, it must mean that the flying clocks kept slower time purely because they moved with a speed v 

relative to the clock on earth. If these experimental results are correct, the conclusions reached in this 

manuscript above must be wrong. 

There have, however, been criticisms of the manner in which the flying-clocks experiments 

had been analyzed and interpreted (see for example [13]). The fact is that the experimental result that 

the flying clocks kept slower time has not been directly measured, since, during these flights, these 

clocks had also been affected by other more serious parameters; like the decrease in the gravity-field. 

The experimenters claim that they took gravity into account. But in addition, aeroplanes are known, for 

reasons which are not of relevance here, to fly in a special way: Usually they accelerate half of the 

route while gaining altitude and then decelerate the rest of the route while descending. If Einstein’s 

conclusion is correct that such acceleration and deceleration, caused by an on-board engine, constitutes 

a gravity-field [14], this effect should have been added to the gravity-part of the analysis. 

 Since the earth is spherical and spinning around an axis, another effect, which had to be 

removed from the data, is the Sagnac-effect [15]. This was done in the analysis, but most probably 

incorrectly. The literature on the Sagnac effect is contradictory and controversial. This effect is experi-

mentally demonstrated for a light-source fastened to the rim of a solid rotating disk. Thus, the circu-

larly-moving reference-frame of the light-source might not be analogous to the case where an aero-

plane is flying around the earth. 

Furthermore, the effects caused by gravity and the Sagnac effect overwhelmed the data so that 

the information had to be extracted from a large amount of “noise” to prove “time-dilation” as derived 

by Einstein from the Lorentz-equations. To be certain that this flight-data do actually prove that clocks 

will be keeping different time-rates, simply because they move linearly relative to one another, one 

must first determine whether there is a Lorentz-transformation for circular motion, and if there is such a 

transformation, what the equations are for such a transformation [8]. 

It is well-known that the time of a clock on a GPS-satellite has to be adjusted owing to “time-

dilation”. That this is required owing to the decrease in gravity, as predicted by Einstein’s General 

Theory of Relativity, is probably correct [8]. But in terms of the derivations in this manuscript, time-

dilation does not occur in the way that Einstein derived it from the Lorentz-equations: However, there 

is an actual difference in time owing to the fact that the same wavefront is (at the same instant in time 

on all the clocks) at different positions within the reference-frame of earth and the reference-frame of 

the GPS satellite. It is easy to show that to correct for the latter difference, an adjustment in the time on 

the clock of the GPS-satellite can be made as if there is time-dilation; even though this difference in 

time is not caused by time-dilation but by the non-coincidence of the primary and non-primary wave-

fronts. 

The longer lifetime of a cosmic-ray muon might thus not be caused by a clock that is keeping 

slower time, while moving with the muon: Choose the origin 0’ of the muon’s proper IRF=K’ to 

coincide with the origin 0 at the earth’s surface within the proper IRF=K of the earth, at the same time 
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t=0 at which the muon is born high up in the atmosphere. Within the muon’s IRF=K’, the distance it 

has to travel to reach the earth is H’. A cosmic-ray muon, which has an average lifetime τµ within its 

proper reference frame, will thus just reach the earth when it forms at a height H’=vµτµ, where vµ is the 

actual speed with which the muon approaches the earth along its actual path through space. The non-

primary coordinates of the muon’s birth as referenced within the IRF=K of earth, however, follow as: 

 

              'H*H*x γ==     (27a) 

And 
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γ−= µ

    (27b) 

 

The minus-sign for the transformed time t* is required since the muon is approaching the origin 0 on 

earth. Relative to earth, the muon thus forms further away at a height H*, and at a time-interval *t  

before it forms at time t=0 within its own proper IRF=K’. Thus, as measured relative to earth, the muon 

lives longer before it reaches the earth, since *t  must be added to its actual proper lifetime τµ which 

expires while the muon moves along its actual path with speed vµ to reach the earth. Using two separate 

detectors along its path to measure the speed of the muon on its way to earth, will give this value for 

the speed, while from the perspective at the origin 0 on earth the muon is moving with the speed γvµ. 

The muon is thus observed to live longer owing to the Nostradamus-effect, not because of time-dilation 

and length-contraction as is argued in textbooks on modern physics. 

 

4.7 Length-“contraction” 

It has already been pointed out in section 1 that, before Einstein postulated his Special Theory of 

Relativity in 1905, the Lorentz-transformation had been derived and justified in terms of the length-

contraction of a rod which is moving through the ether. Einstein’s postulates gave a more plausible 

reason why the Lorentz-transformation must be valid. This must surely mean that the requirement for 

length-contraction is redundant, and should therefore not be occurring at all. Nonetheless, Einstein 

went ahead and derived length-contraction from the Lorentz-transformation as if it is not redundant. 

Einstein thus claimed that this contraction is still real even though it is not required for the Lorentz-

transformation to be valid. 

 What Einstein did not realize is that the proper IRF for the rod is the one in which the rod is 

stationary and that the Lorentz-transformation of the front-end and the tail-end of the rod can only be 

transformed from its proper IRF into the non-proper IRF relative to which the rod is moving. In 

contrast, Einstein assumed that at any instant in time t the the front-end and tail-end of the rod define 

two instantaneous positions within the rod’s non-proper IRF, and he then reversely transformed these 

non-primary positions from the non-proper IRF into the rod’s proper IRF. As already argued above, 

this is not allowed by the physics involved! 

What Einstein should have done was to transform the stationary front-end and tail-end from 

the rod’s proper IRF into the non-proper IRF within which the rod is moving. When one does this by 
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using Eq. 14 for a rod with lenght L’ within its proper IRF, the length of the rod within its non-proper 

IRF actually becomes longer to be given by:  

 

            'L*L γ=     (28a) 

 

And a time difference develops within the rod between its front-end and its tail-end, given by: 

 

         
2v

'cL
*T γ=∆     (28b) 

 

The rod has a centre-of-mass (COM) situated at the middle of the rod, and according to section 4.4 this 

COM follows a clasical Galilean-path while having a relativistic mass given by Eq. 23b.  

So what does the change in time (Eq. 28b) within the rod, along its increased length mean? 

Such a change in time can only have physics-meaning when the entity, within which it occurs, is a 

coherent wave, so that it has a phase-time difference between its front-end and tail-end. If the wave-

length of this wave is λ, and its frequency is ν, there must be n=L*/λ wavelenths along its transformed 

length L*; so that the corresponding phase-time difference must be: 

 

            
νλ

=
ν

=∆
*Ln

TP     (29a) 

 

Setting ∆TP equal to ∆T* in Eq. 28b, one obtains that: 

 

                    
v

c
=λν

2

     (29b) 

 

Multiplying the last term with m/m where m is the relativistic mass of the rod at speed v, and using 

Planck’s relationship, to write that mc2=hν, one can write Eq. 29b as follows: 

 

             
p

h
=

mv

h
=λ      (29c) 

 

This is de Broglie’s formula for the wavelength of a moving entity with mass m. Thus, if Einstein had 

not incorrectly derived “length-contraction”, he might have discovered the wave-nature of moving 

matter 20 years before de Broglie postulated it. 

 Since the de Broglie wavelength seems to follow directly from the Special Theory of Rela-

tivity, which in turn, is known to follow directly from Maxwell’s wave-equations, the interpretation of 

quantum mechanics might, and probably must, follow directly from Maxwell’s wave-equations. This 

falls outside the intended scope of the present manuscript: It will therefore be considered in future 

publications [8]. 
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5. Conclusion 

The Lorentz-transformation has been derived by assuming that there is no time-dilation: i.e. that all 

synchronized perfect clocks, where-ever they are, and with whatever velocity they move relative to one 

another, must keep the exact same time. From this analysis deductions could be made which differ 

fundamentally from the traditional viewpoints derived in terms of time-dilation. The following is a 

summary of the most important deductions when assuming that there is no time-dilation: 

1. There is no length-contraction: A moving object with mass is a coherent wave with a de Broglie 

wavelength along the direction in which it moves: This causes a length-dilation in the direction of 

motion. 

2. The Lorentz-transformation is only valid when it transforms the coordinates of a primary-event from 

its proper IRF into another IRF, relative to which the proper IRF moves. Such a transformed primary-

event is a non-primary event which is caused by the primary-event, and is therefore itself not a 

primary-event within the IRF into which it has been transformed: It can therefore not, in turn, be 

transformed back into the primary-event (which caused it) by using an “inverse” Lorentz-transfor-

mation. The Lorentz-transformation is unidirectional, just like a relativistic coordinate-transformation 

must be. 

3. The concept of Minkowski space-time violates the basic rules of mathematics, since the space-time 

coordinates are not linearly independent: Minkowski’s space-time concept can therefore not be used to 

model real physics. 

4. The Lorentz-transformation is not an invariant coordinate-transformation. Physics-models based on 

the assumption that all the equations which model physics must be invariant under a Lorentz-transfor-

mation, are most-probably totally or, at best, partly flawed. 
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